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isolation initiation layer (GIIL) and/or a novel exchange-
break layer (EBL) that can improve the signal-to-noise per-
formance of the PMR media stack. The PMR media stack
includes a substrate, a soft underlayer on the substrate, an
interlayer positioned on the soft underlayer, and a grain iso-
lation initiation layer (GIIL) positioned on the interlayer, a
magnetic layer positioned on the GIIL, and an exchange
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18 Claims, 8 Drawing Sheets

100
1

Coc 116
o - 114
-118

EBL
112

Mag3
Bl -118
Mag2 - 112
-118

EBL
Magl - 112
CocrRuoxide GiiL | 110
- - 108

Intermediate layers

-106

Seed
AFC-SUL ~-104
Substrate ~ 102




US 9,190,094 B2

Page 2

(56)

6,143,375
6,145,849
6,146,737
6,149,696
6,150,015
6,156,404
6,159,076
6,164,118
6,200,441
6,204,995
6,206,765
6,210,819
6,216,709
6,221,119
6,248,395
6,261,681
6,270,885
6,274,063
6,283,838
6,287,429
6,290,573
6,299,947
6,303,217
6,309,765
6,358,636
6,362,452
6,363,599
6,365,012
6,381,090
6,381,092
6,387,483
6,391,213
6,395,349
6,403,919
6,408,677
6,426,157
6,429,984
6,482,330
6,482,505
6,500,567
6,528,124
6,548,821
6,552,871
6,565,719
6,566,674
6,571,806
6,628,466
6,664,503
6,670,055
6,682,807
6,683,754
6,730,420
6,743,528
6,759,138
6,778,353
6,795,274
6,855,232
6,857,937
6,893,748
6,899,959
6,916,558
6,939,120
6,946,191
6,967,798
6,972,135
7,004,827
7,006,323
7,016,154
7,019,924
7,045,215
7,070,870
7,090,934
7,099,112
7,105,241
7,119,990

References Cited

U.S. PATENT DOCUMENTS

11/2000
11/2000
11/2000
11/2000
11/2000
12/2000
12/2000
12/2000
3/2001
3/2001
3/2001
4/2001
4/2001
4/2001
6/2001
7/2001
8/2001
8/2001
9/2001
9/2001
9/2001
10/2001
10/2001
10/2001
3/2002
3/2002
4/2002
4/2002
4/2002
4/2002
5/2002
5/2002
5/2002
6/2002
6/2002
7/2002
8/2002
11/2002
11/2002
12/2002
3/2003
4/2003
4/2003
5/2003
5/2003
6/2003
9/2003
12/2003
12/2003
1/2004
1/2004
5/2004
6/2004
7/2004
8/2004
9/2004
2/2005
2/2005
5/2005
5/2005
7/2005
9/2005
9/2005
11/2005
12/2005
2/2006
2/2006
3/2006
3/2006
5/2006
7/2006
8/2006
8/2006
9/2006
10/2006

Ross et al.
Bae et al.
Malhotra et al.
Jia

Bertero et al.
Ross et al.
Sun et al.
Suzuki et al.
Gornicki et al.
Hokkyo et al.
Sanders et al.
Lal et al.
Fung et al.
Homola
Homola et al.
Suekane et al.
Hokkyo et al.
Lietal.

Blake et al.
Moroishi et al.
Suzuki
Suzuki et al.
Malhotra et al.
Suekane et al.
Yang et al.
Suzuki et al.
Bajorek

Sato et al.
Suzuki et al.
Suzuki
Hokkyo et al.
Homola
Salamon
Salamon
Suzuki
Hokkyo et al.
Alex

Bajorek
Bertero et al.
Bertero et al.
Nguyen
Treves et al.
Suzuki et al.
Lairson et al.
Treves et al.
Rosano et al.
Alex

Hsieh et al.
Tomiyasu et al.
Lairson et al.
Suzuki et al.
Bertero et al.
Suekane et al.
Tomiyasu et al.
Harper

Hsieh et al.
Jairson et al.
Bajorek
Bertero et al.
Bertero et al.
Umezawa et al.
Harper
Morikawa et al.
Homola et al.
Homola
Suzuki et al.
Suzuki
Nishihira
McNeil et al.
Shimokawa
Bertero et al.
Hokkyo et al.

Harper

Shimokawa et al.

Bajorek et al.

7,147,790
7,161,753
7,166,319
7,166,374
7,169,487
7,174,775
7,179,549
7,184,139
7,196,860
7,199,977
7,208,236
7,220,500
7,229,266
7,239,970
7,252,897
7,277,254
7,281,920
7,292,329
7,301,726
7,302,148
7,305,119
7,314,404
7,320,584
7,329,114
7,375,362
7,420,886
7,425,719
7,471,484
7,498,062
7,498,092
7,531,485
7,537,846
7,549,209
7,550,210
7,569,490
7,572,526
7,582,368
7,597,792
7,597,973
7,608,193
7,632,087
7,638,210
7,656,615
7,682,546
7,684,152
7,686,606
7,686,991
7,687,157
7,695,833
7,722,968
7,733,605
7,736,768
7,755,861
7,758,732
7,833,639
7,833,641
7,910,159
7,911,736
7,924,519
7,944,165
7,944,643
7,955,723
7,983,003
7,989,096
7,993,497
7,993,765
7,998,912
8,000,060
8,002,901
8,003,237
8,012,920
8,038,863
8,057,926
8,062,778
8,064,156
8,076,013
8,092,931
8,100,685
8,101,054

B2

12/2006
1/2007
1/2007
1/2007
1/2007
2/2007
2/2007
2/2007
3/2007
4/2007
4/2007
5/2007
6/2007
7/2007
8/2007

10/2007

10/2007

11/2007

11/2007

11/2007

12/2007
1/2008
1/2008
2/2008
5/2008
9/2008
9/2008

12/2008
3/2009
3/2009
5/2009
5/2009
6/2009
6/2009
8/2009
8/2009
9/2009

10/2009

10/2009

10/2009

12/2009

12/2009
2/2010
3/2010
3/2010
3/2010
3/2010
3/2010
4/2010
5/2010
6/2010
6/2010
7/2010
7/2010

11/2010

11/2010
3/2011
3/2011
4/2011
5/2011
5/2011
6/2011
7/2011
8/2011
8/2011
8/2011
8/2011
8/2011
8/2011
8/2011
9/2011

10/2011

11/2011

11/2011

11/2011

12/2011
1/2012
1/2012
1/2012

‘Wachenschwanz et al.
‘Wachenschwanz et al.
Ishiyama
Suekane et al.
Kawai et al.
Ishiyama
Malhotra et al.
Treves et al.
Alex

Suzuki et al.
Morikawa et al.
Tomiyasu et al.
Harper

Treves et al.
Shimokawa et al.
Shimokawa et al.
Homola et al.
Treves et al.
Suzuki

Treves et al.
Treves et al.
Singh et al.
Harper et al.
Harper et al.
Treves et al.
Tomiyasu et al.
Treves et al.
‘Wachenschwanz et al.
Calcaterra et al.
Berger et al.
Hara et al.
Ishiyama et al.
‘Wachenschwanz et al.
Berger et al.
Staud

Berger et al.
Berger et al.
Homola et al.
Ishiyama
‘Wachenschwanz et al.
Homola

Berger et al.
‘Wachenschwanz et al.
Harper

Suzuki et al.
Harper et al.
Harper

Berger et al.
Ishiyama
Ishiyama

Suzuki et al.
Ishiyama
Lietal.
Calcaterra et al.
Sonobe et al.
Tomiyasu et al.
Jung

Bajorek
Lambert

O’Dell

Jiang et al.
Umezawa et al.
Sonobe et al.
Berger et al.
Moroishi et al.
Kim et al.

Chen et al.
Zhang et al.
Chen et al.
Sonobe et al.
Shimokawa
Homola

Ayama et al.
Suzuki et al.
Suzuki et al.
Sonobe et al.
Ishiyama et al.
Harper et al.
Chen et al.



US 9,190,094 B2

Page 3
(56) References Cited 8,743,666 Bl 6/2014 Bertero et al.
8,758,912 B2 6/2014 Srinivasan et al.
U.S. PATENT DOCUMENTS 8,787,124 Bl 7/2014 Chernyshov et al.
8,787,130 Bl 7/2014 Yuan et al.
8,125,723 B1  2/2012 Nichols et al. 8,791,391 B2 7/2014 Bourez
8,125,724 B1  2/2012 Nichols et al. 8,795,765 B2 82014 Koike et al.
8,137,517 Bl 3/2012 Bourez 8,795,790 B2 82014 Sonobe et al.
8,142916 B2  3/2012 Umezawa et al. 8,795,857 B2 82014 Ayamaetal.
8,163,093 Bl 4/2012 Chen et al. 8,800,322 Bl 82014 Chanetal.
8,171,949 Bl  5/2012 Lund et al. 8,811,129 Bl 82014 Yuan et al.
8.173.282 Bl 5/2012 Sun et al. 8,817,410 Bl 8/2014 Moser et al.
8178480 B2  5/2012 Hamakubo et al. 2002/0060883 Al 5/2002 Suzuki
8206780 B2  6/2012 Suzuki 2003/0022024 Al 1/2003 Wachenschwanz
8,218,260 B2 7/2012 Ilamratanakul et al. 2004/0022387 Al 2/2004 Weikle
8,247,095 B2 8/2012 Champion et al. 2004/0132301 Al 7/2004 Harper et al.
8,257,783 B2 9/2012 Suzuki et al. 2004/0202793 Al  10/2004 Harper et al.
8208609 Bl  10/2012 Liew et al. 2004/0202865 Al  10/2004 Homola et al.
8.208.680 B2  10/2012 Sonobe et al, 2004/0209123 A1 10/2004 Bajorek et al.
8,309,239 B2  11/2012 Umezawa et al. 2004/0209470 Al 10/2004 Bajorek
8316.668 Bl 11/2012 Chan et al. 2005/0036223 Al 2/2005 Wachenschwanz et al.
8329312 B2 122012 Sanders t al. 2005/0142990 Al 6/2005 Homola
8,331’056 B2 12/2012 O’Dell 2005/0150862 Al 7/2005 Harper et al.
8,354:618 Bl 1/2013 Chen et al. 2005/0151282 Al 7/2005 Harper et al.
8.367.228 B2 2/2013 Sonobe et al. 2005/0151283 Al 7/2005 Bajorek et al.
8383200 B2 2/2013 Ayama 2005/0151300 A1 7/2005 Harper et al.
8,394,243 Bl 3/2013 Jung et al. 2005/0155554 Al 7/2005 Saito
8397.751 Bl 3/2013 Chan et al. 2005/0167867 Al 8/2005 Bajorek et al.
8399.800 Bl  3/2013 Bourez 2005/0263401 Al  12/2005 Olsen et al.
8402’638 Bl 3/2013 Treves et al. 2006/0147758 Al 7/2006 Jung et al.
8404056 Bl 3/2013 Chen et al. 2006/0181697 Al 8/2006 Treves et al.
8404369 B2 3/2013 Ruffini cf al. 2006/0207890 A1 9/2006 Staud
8404’370 B2 3/2013 Sato et al. 2007/0070549 Al 3/2007 Suzuki et al.
8.406.918 B2  3/2013 Tanetal. 2007/0245909 Al  10/2007 Homola
8.414.966 B2 4/2013 Yasumori et al. 2007/0292720 Al 12/2007 Suess
8425075 B2 4/2013 Ishiyama 2008/0075845 Al  3/2008 Sonobe et al.
8,431,257 B2 4/2013 Kim et al. 2008/0093760 Al 4/2008 Harper et al.
8.431.258 B2 4/2013 Onoue et al. 2009/0117408 Al 5/2009 Umezawa et al.
8453315 B2 6/2013 Kajiwara et al. 2009/0136784 A1 52009 Suzuki et al.
8,488,276 Bl 7/2013 Jung et al. 2009/0169922 Al 7/2009 Ishiyama
8,491,800 Bl 7/2013 Dorsey 2009/0191331 Al 7/2009 Umezawa et al.
8.492.009 Bl 7/2013 Homola et al. 2009/0195924 Al 82009 Nemoto etal. ............. 360/110
8.492.011 B2  7/2013 Ttoh etal. 2009/0202866 A1 82009 Kim et al.
8,496:466 Bl 7/2013 Treves et al. 2009/0311557 Al 12/2009 Onoue et al.
8,517,364 Bl 8/2013 Crumley et al. 2010/0143752 Al 6/2010 Ishibashi et al.
8.517.657 B2 8/2013 Chen et al. 2010/0190035 Al 7/2010 Sonobe et al.
8.524.052 Bl 92013 Tan etal. 2010/0196619 A1 8/2010 Ishiyama
8,530,065 Bl 9/2013 Chernyshov et al. 2010/0196740 Al 82010 Ayama et al.
8,546,000 B2  10/2013 Umezawa 2010/0209601 Al 8/2010 Shimokawa et al.
8,551,253 B2  10/2013 Na’im et al. 2010/0215992 Al 8/2010 Horikawa et al.
8,551’627 B2  10/2013 Shimada et al. 2010/0232065 Al 9/2010 Suzuki et al.
8,556:566 Bl  10/2013 Suzuki et al. 2010/0247963 Al 9/2010 Kimetal. .....cccooovvnn. 428/800
8,559,131 B2  10/2013 Masuda et al. 2010/0247965 Al 9/2010 Onoue
8,562,748 Bl  10/2013 Chen et al. 2010/0261039 Al  10/2010 Itoh et al.
8.565.050 Bl  10/2013 Bertero et al. 2010/0279151 Al 11/2010 Sakamoto et al.
8.570.844 Bl  10/2013 Yuan et al. 2010/0300884 Al  12/2010 Homola et al.
8580410 B2  11/2013 Onoue 2010/0304186 Al  12/2010 Shimokawa
8.584.687 B1  11/2013 Chen et al. 2011/0003175 Al 12011 Valcuetal. ............. 428/800
8591709 Bl 11/2013 Limetal. 2011/0097603 Al 4/2011 Onoue
8592061 B2  11/2013 Onoue et al. 2011/0097604 Al 4/2011 Onoue
8596’287 Bl  12/2013 Chen et al. 2011/0171495 Al 7/2011 Tachibana et al.
8597723 Bl 122013 Jung etal. 2011/0206947 Al 82011 Tachibana et al.
8,603,649 B2  12/2013 Onoue 2011/0212346 Al 9/2011 Onoueetal. ................ 428/828
8,603,650 B2 12/2013 Sonobe et al. 2011/0223446 Al 9/2011 Onoue et al.
8,605:388 B2  12/2013 Yasumori et al. 2011/0244119 Al 10/2011 Umezawa et al.
8,605,555 Bl 12/2013 Chernyshov et al. 2011/0299194 Al 12/2011 Aniya et al.
8,608,147 B1  12/2013 Yap et al. 2011/0311841 Al  12/2011 Saito et al.
8,609,263 Bl  12/2013 Chernyshov et al. 2012/0069466 Al 3/2012 Okamoto et al.
8,619,381 B2  12/2013 Moser et al. 2012/0070692 Al 3/2012 Sato et al.
8,623,528 B2 1/2014 Umezawa et al. 2012/0077060 Al 3/2012 Ozawa
8,623,529 B2 1/2014 Suzuki 2012/0127599 Al 5/2012 Shimokawa et al.
8,634,155 B2 1/2014 Yasumori et al. 2012/0127601 Al 5/2012 Suzuki et al.
8,658,003 Bl  2/2014 Bourez 2012/0129009 Al 5/2012 Sato et al.
8,658,292 Bl 2/2014 Mallary et al. 2012/0140359 Al 6/2012 Tachibana
8,665,541 B2  3/2014 Saito 2012/0141833 Al 6/2012 Umezawa et al.
8,668,953 Bl  3/2014 Buechel-Rimmel 2012/0141835 Al 6/2012 Sakamoto
8,674,327 Bl 3/2014 Poon etal. 2012/0148875 Al 6/2012 Hamakubo et al.
8,685,214 Bl 4/2014 Moh et al. 2012/0156523 Al 6/2012 Seki et al.
8,696,404 B2  4/2014 Sunetal. 2012/0164488 Al 6/2012 Shin et al.
8,711,499 Bl  4/2014 Desai et al. 2012/0170152 Al 7/2012 Sonobe et al.



US 9,190,094 B2
Page 4

(56)

2012/0171369
2012/0175243
2012/0189872
2012/0196049
2012/0207919
2012/0225217
2012/0251842
2012/0251846
2012/0276417
2012/0308722
2013/0040167
2013/0071694
2013/0165029
2013/0175252
2013/0216865
2013/0230647
2013/0314815
2014/0011054
2014/0044992
2014/0050843
2014/0151360
2014/0234666

References Cited

U.S. PATENT DOCUMENTS

Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al
Al

7/2012
7/2012
7/2012
8/2012
8/2012
9/2012
10/2012
10/2012
11/2012
12/2012
2/2013
3/2013
6/2013
7/2013
8/2013
9/2013
11/2013
1/2014
2/2014
2/2014
6/2014
8/2014

Koike et al.
Fukuura et al.
Umezawa et al.
Azuma et al.
Sakamoto et al.
ITtoh et al.

Yuan et al.
Desai et al.

Shimokawa et al.

Suzuki et al.

Alagarsamy et al.

Srinivasan et al.
Sun et al.
Bourez
Yasumori et al.
Onoue et al.
Yuan et al.
Suzuki

Onoue

Yi et al.
Landdell et al.
Knigge et al.

OTHER PUBLICATIONS

Victora et al., “Composite media for perpendicular magnetic record-
ing”, IEEE Trans. Magn., vol. 41, 2005, pp. 537-542.

Suess et al., “Optimization of exchange spring perpendicular record-
ing media”, IEEE Trans. Magn. vol. 41, 2005, pp. 3166-3168.
Berger et al., “Improved media performance in optimally coupled
exchange spring layer media”, Applied Physics letters, vol. 93, 2008,
pp. 122502-122502-3.

Zhang et al., “Effects of exchange coupling between cap layer and
oxide layer on the recording performance in perpendicular media”,
Journal of Applied Physics, vol. 105, 2009, pp. 07B710-07B710-3.
Choe et al., “Control of Exchange Coupling Between Granular Oxide
and Highly Exhange Coupled Cap Layers and the Effect on Perpen-
dicular Magnetic Switching and Recording Characteristics”, IEEE
Trans. on Magnetics, vol. 45, No. 6, Jun. 2009, pp. 2694-2700.
Choe et al. “Writeability Enhancement in Perpendicular Magnetic
Multilayered Oxide Media for High Areal Density Recording”, IEEE
Trans. on Magnetics, vol. 47, No. 1, Jan. 2011, pp. 55-62.

Nolan et al. “Effect of Composite Designs on Writability and Ther-
mal Stability of Perpendicular Recording Media”, IEEE Trans. on
Magnetics, vol. 47, No. 1, Jan. 2011, pp. 63-68.

* cited by examiner



US 9,190,094 B2

Sheet 1 of 8

Nov. 17, 2015

U.S. Patent

¢ 'Old
207 ajes1sgns
07— 1NS-24Y
paas
90z
siaAe| a1eIpawIalu|
307
o1z 711D 9pIX0-NYII0)
71— 18en
183 9pIX0-NYII0)
8Tz
raxa ¢Ben
— 793 opIX0-N¥ID0)
¢de
ranae
793
6Tz -
e
viz— )
91— 000

V/oom

I °'Old
207 ajes1sgns
I NS-D4V

paas
90T
20T siaAe| a1eIpawIalu|
oTT— 7119 9PIXO-NYID0)
T 13e

EE
8TT— |
AR ¢Ben
8TT— | 183

gseN
71T

GE]
8TT— | -

e

Y11 0
91T | i

V/OOH



US 9,190,094 B2

Sheet 2 of 8

Nov. 17, 2015

U.S. Patent

¢ oid
{1LU) SSOUOIL THID

L2 6L PR G4 A LL 60 LG

\.

¢

/

/7
S
.

GAVA\

\
POE
0L .

—p

y0¢ epxo-nyinon M SpXe-ID0D @

GovS

0088

G08S

0004

0024

GovL

0084

0084

(80} OH



US 9,190,094 B2

Sheet 3 of 8

Nov. 17, 2015

U.S. Patent

¢ Old
(uoulr AMAAIN

GL2 042 G9'7 09'Z
Zel
L oeL
geL-
¢ 9ZL-
n ¢ A
F\_q ZEL
B AR
B gL

spixo-in0n @ epe-nygined [l

(8P LLENS

v Old
(Yourrtiaaaain
GL'Z 0.2 592 097
98
66
N .
0oL
1_°
L oL N
— 2oL~
H
£0L
A
apxo-inon @ eppo-mpunes [l

!

4017

!

00v



US 9,190,094 B2

Sheet 4 of 8

Nov. 17, 2015

U.S. Patent

L Old

(Gphu HNSSMm

Gal 1A A g7 Sok
OcL
‘ L'2L

u 7Y
’ oL
i

< .
£l
VoL

apixo-inos @ apxo-ninos I

{(gpheuy HNSSM

08¢d

oLe
0z
oee
0ve
0se

g "9l
(outrIpmaaig
G2 047 597 092
'II|

L
.

N

7'

098
VAN
08e

epxo-nyinoD @ apxo-1000 A

!

!

06 004

e

o

{(gap



US 9,190,094 B2

Sheet 5 of 8

Nov. 17, 2015

U.S. Patent

6 Ol 8 9ld
(uour) AN {yourt) AAARIA
vz Ovz 887 987 veZ eeZ 08¢ Zve OvZ 887 98¢ ¥EZ 787 08T
G911 0Z'74
B B
0411 0eZL
u e ¢ )
SLLL & OvEL @
= w
mll e | . ;
= v 08¢l =
'S 5 2 =
g1l 5 \ 2 0971 &
4 e & 0Lz
G611 08 2L
1gg eppouDon [l 1EE ePIXKCTIYIDoD @ 163 eppe-000 Ml 193 SpXO-yIne) @
ALS 009



US 9,190,094 B2

Sheet 6 of 8

Nov. 17, 2015

U.S. Patent

Ll "9l

{(Uouird) AMAAIN
Zv'z  OveZ 8Ee 88z vyeZ zEe 082
02
062

H
B 3 092
He

0LiE
4 0’82
0’62

193 spixo-a000 Il 18T SPIXO-NHIDoD @

{(ap) ZAO

OF 94
(80) oH
008G 062G 0025 0SLS OOLS 0508 000G
00.8
n 05.8
4 0088
- ® oo
7 0068
B ¢ 0568
0006

a3 epixc-0on [l 183 BPIXO-MYISOD @

! !

04 004

{(8Q) sH



U.S. Patent Nov. 17, 2015 Sheet 7 of 8

US 9,190,094 B2

906

FIG. 12




US 9,190,094 B2

Sheet 8 of 8

Nov. 17, 2015

U.S. Patent

€T 'OId

0T0T —

J9Ae| 2139udew ay3 uo pauoisod
(193) 49Ae] yeauq adueydxs ue wio4

A

800T —

1119 9yY3 uo pauonisod isAe| a138udew e w.o4

4

900T —

apIX0-nytHo) e
3uipnjoul 7119 ay3 4aAejua3ul Y3 uo pauoiyisod
(1119) 19Ae| uonennul uoie|os! uieds3 e wao-

A

00T —

JaAejiapun
140S 3y3 uo pauolyisod 19Ae431ul Uue wJio4

A

40/0)

91eJ1SgNS B U0 J9AB[JDPUN 3OS B WI04

0001



US 9,190,094 B2

1
PERPENDICULAR RECORDING MEDIA
WITH GRAIN ISOLATION INITIATION
LAYER AND EXCHANGE BREAKING LAYER
FOR SIGNAL-TO-NOISE RATIO
ENHANCEMENT

CROSS-REFERENCE TO RELATED
APPLICATION(S)

This application claims priority to and the benefit of U.S.
Provisional Application No. 61/808,561 filed on Apr. 4, 2013,
entitled “PERPENDICULAR RECORDING MEDIA WITH
NEW GRAIN ISOLATION INITIATION LAYER AND/OR
EXCHANGE BREAKING LAYER FOR SIGNAL TO
NOISE RATIO ENHANCEMENT?”, the entire content of
which is incorporated herein by reference.

FIELD

Aspects of the present invention relate to magnetic record-
ing media, and more specifically to grain isolation initiation
layer and exchange breaking layer of perpendicular magnetic
recording (PMR) media.

BACKGROUND

Perpendicular magnetic recording (PMR) has been used to
increase the areal recording density of magnetic storage
media. A PMR media stack generally includes a substrate, an
antiferromagnetic coupled soft magnetic underlayer (AFC-
SUL), a seed layer, an intermediate layer, a grain isolation
initiation layer (GIIL) and a magnetic layer stack, in that
order. The magnetic layer stack includes a number of mag-
netic layers separated by a number of exchange-break layers
(EBLs) or exchange-control layers (ECLs). The GIIL can
enhance magnetic decoupling of the magnetic layers, and the
EBLs help to reduce the coercivity (Hc) and saturation field
(Hs) of the PMR media stack as a whole. Reduction of inter-
granular magnetic coupling of the magnetic layers is desir-
able because it can improve the signal-to-noise ratio (SNR) of
the PMR media stack.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a drawing illustrating a perpendicular magnetic
recording (PMR) media stack with a CoCrRu-oxide GIIL
providing an improved signal-to-noise ratio (SNR) in accor-
dance with an embodiment of the present invention.

FIG. 2 is a drawing illustrating a PMR media stack includ-
ing a CoCrRu-oxide exchange break layer (EBL) with
improved grain segregation, in accordance with an embodi-
ment of the present invention.

FIG. 3 is a plot illustrating a comparison of a PMR media
stack including a CoCrRu-oxide GIIL with a PMR media
stack including a CoCr-oxide GIIL in terms of coercivity as a
function of GIIL thickness in accordance with an embodi-
ment of the present invention.

FIG. 4 is a plot illustrating a comparison of SNR-2T versus
magnetic write width (MWW) of PMR media stacks respec-
tively including a CoCr-oxide GIIL and a CoCrRu-oxide
GIIL in accordance with an embodiment of the present inven-
tion.

FIG. 5is aplot illustrating a comparison of SNR-1T versus
MWW of PMR media stacks respectively including a CoCr-
oxide GIIL and a CoCrRu-oxide GIIL in accordance with an
embodiment of the present invention.
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FIG. 6 is a plot illustrating a comparison of reverse over-
write (OW2) versus MWW between a PMR media stack with
a CoCr-oxide GIIL and a PMR media stack with a CoCrRu-
oxide GIIL in accordance with an embodiment of the present
invention.

FIG. 7 is a plot illustrating a comparison of on-track
weighted sum SNR (wsSNR_init) versus adjacent-track
wsSNR (wsSNR_final) between a PMR media stack with a
CoCr-oxide GIIL and a PMR media stack with a CoCrRu-
oxide GIIL in accordance with an embodiment of the present
invention.

FIG. 8 is a plot illustrating a comparison of wsSNR_init
versus MWW between a PMR media stack with a CoCr-oxide
EBL and a PMR media stack with a CoCrRu-oxide EBL in
accordance with an embodiment of the present invention.

FIG. 9 is a plot illustrating a comparison of wsSNR_ final
versus MWW of a media stack with a CoCr-oxide EBL and a
PMR media stack with a CoCrRu-oxide EBL in accordance
with an embodiment of the present invention.

FIG. 10 is a plot illustrating a comparison of saturation
field versus coercivity between a PMR media stack with a
CoCr-oxide EBL and a PMR media stack with a CoCrRu-
oxide EBL in accordance with an embodiment of the present
invention.

FIG. 11 is a plot illustrating a comparison of OW2 versus
MWW of a PMR media stack with a CoCr-oxide EBL and a
PMR media stack with a CoCrRu-oxide EBL in accordance
with an embodiment of the present invention.

FIG. 12 is a conceptual drawing illustrating a hard disk
drive including a PMR media stack in accordance with an
embodiment of the present invention.

FIG. 13 is a flow chart illustrating a method of fabricating
a perpendicular magnetic recording media stack with a
CoCrRu-oxide GIIL in accordance with an embodiment of
the present invention.

DETAILED DESCRIPTION

Reduction of intergranular magnetic coupling of the mag-
netic layers is a key challenge to improving the signal-to-
noise ratio (SNR) for perpendicular magnetic recording
(PMR) media. In various aspects of the present invention, a
PMR media stack of an exchange coupled composite media
(ECC) with improved SNR and a method of making the same
are provided.

A perpendicular magnetic recording (PMR) media stack of
an ECC generally includes a number of soft magnetic under-
layers (SUL), intermediate underlayers (IL.), and a number of
magnetic layers. To achieve higher areal density for PMR
media, it is generally desirable to improve the SNR and write-
ability of the PMR media. For SNR improvement, it is desir-
able that the grains of magnetic layer have small grain size,
narrow size distribution, and also are well decoupled mag-
netically. On the other hand, it is desirable that magnetic grain
of the magnetic layer has suitably high magnetic anisotropy
(Ku) to maintain thermal stability. The magnetic layer may
include a CoPtX-oxide alloy (e.g., where X is Cr, Ru, or B,
and the oxide is TiO2, SiO2, Cr203, B203, etc.). Using a
CoPtX-oxide alloy, high Ku can be achieved by reducing
non-magnetic elements such as Cr, Ru, or oxide; but in doing
so magnetic coupling of magnetic grains also increases,
which causes undesirable SNR. One solution to improve SNR
of PMR media is to use a non-magnetic CoCr-oxide grain
isolation initiation layer (GIIL) to overcome or reduce the
magnetic coupling of high Ku magnetic layers. The CoCr-
oxide GIIL is generally positioned below a magnetic layer of
a PMR media stack and provides well-segregated grains with
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thick oxide grain boundaries. Therefore, PMR media may
include the CoCr-oxide GIIL to control and improve segre-
gation of magnetic grains because high Ku materials gener-
ally have strong intergranular coupling between magnetic
grains.

In various aspects of the present disclosure, a CoCrRu-
oxide GIIL. may be used to replace the CoCr-oxide GIIL in the
PMR media stack. The CoCrRu-oxide GIIL may effectively
improve grain segregation of a magnetic layer, increase coer-
civity (Hc), and also substantially reduce noise of the mag-
netic media including the CoCrRu-oxide GIIL. In other
aspects, the CoCrRu-oxide can also be used in an exchange
break layer (EBL) because the CoCrRu-oxide has desirable
exchange breaking property as well as segregation enhance-
ment property.

In various aspects of the present disclosure, a novel GIIL
may include a CoCrRu-oxide alloy (e.g., where the oxide is
TiO2 at about 10 to 25 atomic percent and the Ru is at about
10 to 40 atomic percent). The presence of Ru in the GIIL can
cause the Co to be substantially non-magnetic, and therefore
Co may be used as a nonmagnetic intermediate layer if the
amount of element (Ru) is more than magnetic transition
composition. In one embodiment, the element Ru is com-
pletely solid soluble in a Co matrix, and is a strong hexagonal-
closed-packed (HCP) phase stabilizer. In the CoCr-oxide
GIIL, however, Cr easily can make second phase beyond a
certain point because Cr is a body-centered-cubic (BCC)
phase stabilizer.

FIG. 1 is a drawing illustrating a PMR media stack 100
with a CoCrRu-oxide GIIL providing an improved signal-to-
noise ratio (SNR) in accordance with an aspect of the present
disclosure. The segregation enhancement provided by the
CoCrRu-oxide GIIL translates to higher coercivity (Hc) and
improved on-track weighted sum SNR (wsSNR_init) and
adjacent-track wsSNR (wsSNR_final) performance of the
PMR media stack 100. The PMR media stack 100 includes a
substrate 102 (e.g., Al—Mg or glass), an antiferromagnetic
coupled soft magnetic underlayer (AFC-SUL) 104, a seed
layer 106 (e.g., a NiWAIFe seed layer), dual Ru intermediate
layers (ILs) 108, a CoCrRu-oxide GIIL 110 (e.g., the oxide is
TiO2 at about 10 to 25 atomic percent, and the Ru is about 10
to 40 atomic percent), a number of magnetic layers 112 (e.g.,
Magl, Mag2, and Mag?3), a capping layer (114), and a carbon
overcoat (COC) 116. The magnetic layers 112 are separated
by a number of EBLs (118). In various embodiments, the
magnetic layers may include a CoPtX-oxide alloy, wherein X
is selected from the group consisting of Cr, Ru, and B, and the
oxide is selected from the group consisting of TiO2, SiO02,
Cr203, and B203. A number of exemplary materials are
presented herein. However, in other embodiments, other suit-
able materials may also be used, including, for example,
materials known in the art.

In one embodiment, a PMR media stack may be an
exchange coupled composite medium. In one embodiment, a
magnetic layer may include a number of magnetic layers
(e.g., magnetic layers 112), and an EBL may include a num-
ber of EBLs (e.g., EBLs 118). The magnetic layers and the
EBLs may be alternately arranged. In one embodiment, the
EBL may include a CoCrRu-oxide. In one embodiment, the
GIIL may include a material selected from the group consist-
ing of a CoCrRu-oxide and a CoCr-oxide. In one embodi-
ment, the EBL may include a number of EBLs, and two of the
EBLs may include different materials. In one embodiment,
the EBL may include TiO2 at about 10 to 25 atomic percent
and Ru at about 10 to 40 atomic percent.

In the PMR media stack 100, Co has a hexagonal close
packed (HCP) structure while Ru also has a HCP structure
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with bigger atom diameter. The Ru doping in the GIIL can
form Co—Cr—Ru substitution solid solution with larger lat-
tice constants. Therefore, the CoCrRu-oxide GIIL. may play a
role as a buffer layer to minimize or reduce stress induced by
lattice constant mismatch because the atomic size of Ru is
bigger than that of Co and Cr, which is closer to that of the Ru
IL. Therefore, the lattice mismatch may be controlled and
reduced by the amount of Ru in the CoCrRu-oxide GIIL.

In FIG. 1, the magnetic layers 112 (e.g., Magl, Mag2, and
Mag3) are separated by anumber of EBL.s 118. The EBL.s 118
help to improve the write-ability of the PMR media stack 100
during the recording process by reducing coercivity (Hc) and
saturation field (Hs) of the media stack substantially. The
EBL 118 may include a Co—Ru or Co—Cr-oxide alloy.
There is a Ku gradient from the Magl magnetic layer toward
the Mag3 magnetic layer, and the Magl magnetic layer has
the highest Ku. Because the magnetic layers 112 Magl to
Mag3 have high Ku and are magnetically coupled, segrega-
tion still is important. The EBL. 118 may include a CoCr-
oxide alloy that serves as a segregation helper as well as an
EBL.

FIG. 2 is a drawing illustrating a PMR media stack 200
including an EBL containing a CoCrRu-oxide to improve
grain segregation, in accordance with an aspect of the disclo-
sure. The PMR media stack 200 includes, starting from a base
or bottom layer, a substrate 202 (e.g., Al—Mg or glass), an
antiferromagnetic coupled soft magnetic underlayer (AFC-
SUL) 204, a seed layer 206 (e.g., a NiWAIFe seed layer), dual
Ru intermediate layers (ILs) 208, a CoCrRu-oxide GIIL 210
(e.g., the oxide is TiO2 at about 10 to 25 atomic percent and
the Ru is about 10 to 40 atomic percent), a number of mag-
netic layers 212 (e.g., Magl, Mag2, and Mag3), a capping
layer (214), and a carbon overcoat (COC) 216. The magnetic
layers 212 are separated by a number of EBLs 218 and 219.
The EBLs 218 include a CoCrRu-oxide, and the EBL 219
may be a different material than that of the EBLs 218. For
example, the EBL 219 may include CoRu or other suitable
materials known in the art. A number of exemplary materials
are presented herein. However, in other embodiments, other
suitable materials may also be used, including, for example,
materials known in the art.

FIG. 3 is a plot illustrating a comparison of a PMR media
stack including a CoCrRu-oxide GIIL (e.g., GIIL 110) with a
PMR media stack including a CoCr-oxide GIIL in terms of
coercivity (Hc) as a function of GIIL thickness (nm). For this
comparison, both media stacks include a single magnetic
layer (e.g., Magl in FIG. 1) of 7 nm and the same IL to
compare segregation effect. In FIG. 3, the horizontal axis
corresponds to the GIIL thickness (nm), and the vertical axis
corresponds to the coercivity (Oe). The curve 300 of the
CoCr-oxide GIIL and the curve 302 of the CoCrRu-oxide
GIIL both show similar He trends. For each GIIL, its Hc
initially increases with thickness until it reaches a maximum
Hc 304. This initial He increase is due to improved segrega-
tion with the help of the GIIL. Beyond the thickness for the
maximum Hc 304, Hc starts to decrease for both GIILs. The
Hc drop can be explained that the segregation effect saturates
at the maximum Hc, and subgrains begin to form in the
magnetic layer. The difference in He between the CoCr-oxide
GIIL and the CoCrRu-oxide GIIL is shown in FIG. 3. The
maximum Hec is about 300 to 400 Oe higher for the CoCrRu-
oxide GIIL than that of the CoCr-oxide GIIL because
CoCrRu may provide better segregation effect to the mag-
netic layers grown above.

FIG. 4 is aplot illustrating a comparison of SNR-2T versus
magnetic write width (MWW) of PMR media stacks respec-
tively including a CoCr-oxide GIIL and a CoCrRu-oxide
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GIIL (e.g., GIIL 110 or 210). FIG. 5 is a plot illustrating a
comparison of SNR-1T versus MWW of PMR media stacks
respectively including a CoCr-oxide GIIL. and a CoCrRu-
oxide GIIL (e.g., GIIL 110 or 210). Improved grain segrega-
tion of magnetic layers may be shown by examining high
frequency SNR because better grain segregation improves
high frequency SNRs at 2T and 1T frequencies, where 1T is
the period for the highest frequency of the magnetic media
stacks.

In FIG. 4, the horizontal axis corresponds to MWW in
micro-inch, and the vertical axis corresponds to SNR-T2. In
FIG. 5, the horizontal axis corresponds to MWW in micro-
inch, and the vertical axis corresponds to SNR-T1. In both
FIGS. 4 and 5, the data corresponding to the CoCrRu-oxide
GIIL is denoted by the square symbol 400, and the data
corresponding to the CoCr-oxide oxide GIIL is denoted by
the diamond symbol 402. As shown in FIGS. 4 and 5, the
media stack with the CoCrRu-oxide GIIL layer improves its
SNR-2T by about 0.2 dB and SNR-1T by about 0.4 dB for a
given MWW (e.g., between about 2.65 and 2.70 micro-inch).

FIG. 6 is a plot illustrating a comparison of reverse over-
write (OW2) versus magnetic write width (MW W) between a
PMR media stack with a CoCr-oxide GIIL and a PMR media
stack with a CoCrRu-oxide GIIL (e.g., GIIL 110 or 210). In
FIG. 6, the horizontal axis corresponds to the MWW (micro-
inch), and the vertical axis corresponds to OW2 (dB). The
data corresponding to the CoCr-oxide GIIL is denoted by the
square symbol 500, and the data corresponding to the
CoCrRu-oxide GIIL is denoted by the diamond symbol 502.
Generally, a more magnetically decoupled PMR media stack
has poor OW2 relatively. FIG. 6, however, shows that the
PMR media stack with the CoCrRu-oxide GIIL has compa-
rable OW2 to that of the PMR media stack with the CoCr-
oxide GIIL.

FIG. 7 is a plot illustrating a comparison of on-track
weighted sum SNR (wsSNR_init) versus adjacent-track
wsSNR (wsSNR_final) between a PMR media stack with a
CoCr-oxide GIIL and a PMR media stack with a CoCrRu-
oxide GIIL (e.g., GIIL 110 or 210). In FIG. 7, the horizontal
axis corresponds to wsSNR_init (dB), and the vertical axis
corresponds to wsSNR_final (dB). As shown in FIG. 7, the
PMR media stack with the CoCrRu-oxide GIIL shows
improvement on wsSNR_init as well as wsSNR_final by
about 0.2 dB.

FIG. 8 is a plot illustrating a comparison of wsSNR_init
versus MWW between a PMR media stack with a CoCr-oxide
EBL and a PMR media stack with a CoCrRu-oxide EBL (e.g.,
EBL 218). FIG. 9 is a plot illustrating a comparison of wsS-
NR_final versus MWW of a media stack with a CoCr-oxide
EBL and a PMR media stack with a CoCrRu-oxide EBL (e.g.,
EBL 218). In both FIGS. 8 and 9, the data corresponding to
the CoCrRu-oxide EBL is denoted by the diamond symbol
600, and the data corresponding to the CoCr-oxide EBL is
denoted by the square symbol 602. In both FIGS. 8 and 9, the
horizontal axis corresponds to the MWW (micro-inch). In
FIG. 8, the vertical axis corresponds to wsSNR_init (dB). In
FIG. 9, the vertical axis corresponds to wsSNR_final (dB).
The media stack with a CoCrRu-oxide EBL shows both wsS-
NR_init and wsSNR_final improvement by about 0.1 dB as
compared to the CoCr-oxide EBL.

FIG. 10 is a plot illustrating a comparison of Hs versus He
between a PMR media stack with a CoCr-oxide EBL and a
PMR media stack with a CoCrRu-oxide EBL (e.g., EBL. 218).
FIG. 11 is a plot illustrating a comparison of OW2 versus
MWW of a PMR media stack with a CoCr-oxide EBL and a
PMR media stack with a CoCrRu-oxide EBL (e.g., EBL. 218).
In both FIGS. 10 and 11, the data corresponding to the
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CoCrRu-oxide EBL is denoted by the diamond symbol 700,
and the data corresponding to the CoCr-oxide EBL is denoted
by the squire symbol 702. In FIG. 10, the horizontal axis
corresponds to He (Oe), and the vertical axis corresponds to
Hs (Oe). InFIG. 11, the horizontal axis corresponds to MWW
(micro-inch), and the vertical axis corresponds to OW2 (dB).
As shown in FIG. 10, Hs is higher for the PMR media stack
with a CoCrRu-oxide EBL for a given He because this media
is more decoupled magnetically. Due to increased Hs, as
shown in FIG. 11, OW?2 is affected (increased) by about 0.5
dB for the PMR media stack with a CoCrRu-oxide EBL.

FIG. 12 is a conceptual drawing illustrating a hard disk
drive 800 including a PMR media stack in accordance with an
embodiment of the present invention. The disk drive 900 may
include a disk 902 to store data. The disk 902 may include a
PMR media stack similar to the PMR media stack 200 or 300.
The disk 902 resides on a spindle assembly 904 that is
mounted to a drive housing 906. Data may be stored along
tracks in a magnetic recording layer of the disk 902. The disk
drive 900 also includes a spindle motor (not shown) that
rotates a spindle assembly 904 and, thereby, the disk 902 to
position a read/write head 912 at a particular location along a
desired disk track. The position of the read/write head 912
relative to the disk 902 may be controlled by a position control
circuitry 914. Components of the disk drive 900 that are
generally known in the art and not necessary for understand-
ing the present invention, are omitted for clarity.

FIG. 13 is a flow chart illustrating a method 1000 of fab-
ricating a perpendicular magnetic recording media stack in
accordance with an embodiment of the present invention. In
step 1002, a soft underlayer (e.g., underlayer 104 or 204) is
formed on a substrate (e.g., substrate 102 or 202). In step
1004, an interlayer (e.g., interlayer 108 or 208) is formed and
positioned on the soft underlayer. In step 1006, a grain isola-
tion initiation layer (e.g., GIIL 110 or 210) is formed and
positioned on the interlayer. In one aspect, the GIIL includes
a CoCrRu-oxide. In step 1008, a magnetic layer (e.g., Magl
112 or 212) is formed and positioned on the GIIL. In step
1008, an exchange break layer (e.g., EBL 118 or 218) is
formed and positioned on the magnetic layer.

In several embodiments, the deposition of layers can be
performed using a variety of deposition sub-processes,
including, but not limited to physical vapor deposition
(PVD), sputter deposition and ion beam deposition, and
chemical vapor deposition (CVD) including plasma
enhanced chemical vapor deposition (PECVD), low pressure
chemical vapor deposition (LPCVD) and atomic layer chemi-
cal vapor deposition (ALCVD). In other embodiments, other
suitable deposition techniques known in the art may also be
used.

It shall be appreciated by those skilled in the art in view of
the present disclosure that although various exemplary fabri-
cation methods are discussed herein with reference to mag-
netic recording media, disks or wafers containing magnetic
heads, the methods, with or without some modifications, may
be used for fabricating other types of recording disks, for
example, optical recording disks such as a compact disc (CD)
and a digital-versatile-disk (DVD), or magneto-optical
recording disks, or ferroelectric data storage devices.

While the above description contains many specific
embodiments of the invention, these should not be construed
as limitations on the scope of the invention, but rather as
examples of specific embodiments thereof. Accordingly, the
scope of the invention should be determined not by the
embodiments illustrated, but by the appended claims and
their equivalents.
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The various features and processes described above may be
used independently of one another, or may be combined in
various ways. All possible combinations and sub-combina-
tions are intended to fall within the scope of this disclosure. In
addition, certain method, event, state or process blocks may
be omitted in some implementations. The methods and pro-
cesses described herein are also not limited to any particular
sequence, and the blocks or states relating thereto can be
performed in other sequences that are appropriate. For

example, described tasks or events may be performed in an 10

order other than that specifically disclosed, or multiple may
be combined in a single block or state. The example tasks or
events may be performed in serial, in parallel, or in some other
suitable manner. Tasks or events may be added to or removed
from the disclosed example embodiments. The example sys-
tems and components described herein may be configured
differently than described. For example, elements may be
added to, removed from, or rearranged compared to the dis-
closed example embodiments.

What is claimed is:

1. A perpendicular magnetic recording (PMR) media stack
comprising:

a substrate;

a soft underlayer on the substrate;

an interlayer positioned on the soft underlayer;

anon-magnetic grain isolation initiation layer (GIIL) posi-

tioned on the interlayer, the GIIL comprising a CoCrRu-
oxide;

a magnetic layer positioned on the GIIL; and

an exchange break layer (EBL) positioned on the magnetic

layer,

wherein the magnetic layer comprises a plurality of mag-

netic layers, and the EBL comprises a plurality of EBLs,
the magnetic layers and the EBLs being alternately
arranged, and

wherein each of the plurality of EBLs is configured to

prevent a magnetic exchange coupling between a first
layer above and a second layer below the each of the
plurality of EBLs.

2. The PMR media stack of claim 1, wherein the GIIL
comprises TiO2 at about 10 to 25 atomic percent and Ru at
about 10 to 40 atomic percent.

3. The PMR media stack of claim 1, wherein the magnetic
layer comprises a CoPtX-oxide alloy, wherein X is selected
from the group consisting of Cr, Ru, and B, and the oxide is
selected from the group consisting of Ti0O2, Si02, Cr203, and
B203.

4. The PMR media stack of claim 1, wherein the interlayer
comprises Ru.

5. The PMR media stack of claim 1, wherein the substrate
comprises a material selected from the group consisting of
Al—Mg and glass.

6. The PMR media stack of claim 1, wherein the soft
underlayer comprises an antiferromagnetic coupled soft mag-
netic underlayer.

7. A perpendicular magnetic recording (PMR) media stack
comprising:

a substrate;

a soft underlayer on the substrate;

an interlayer positioned on the soft underlayer;

anon-magnetic grain isolation initiation layer (GIIL) posi-

tioned on the interlayer, the GIIL comprising a CoCrRu-
oxide;

a magnetic layer positioned on the GIIL; and

an exchange break layer (EBL) positioned on the magnetic

layer,
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wherein the magnetic layer comprises a plurality of mag-
netic layers, and the EBL comprises a plurality of EBLs,
the magnetic layers and the EBLs being alternately
arranged,

wherein a first EBL and a second EBL of the plurality of

EBLs, comprise different materials, and

wherein the first EBL comprises a CoCrRu-oxide, and the

second EBL comprises a CoCr-oxide.

8. The PMR media stack of claim 7, wherein the first EBL
comprises TiO2 at about 10 to 25 atomic percent and Ru at
about 10 to 40 atomic percent.

9. A hard disk drive comprising the PMR media stack of
claim 1.

10. A method of fabricating a perpendicular magnetic
recording (PMR) media stack, the method comprising:

forming a soft underlayer on a substrate;

forming an interlayer positioned on the soft underlayer;

forming a non-magnetic grain isolation initiation layer

(GIIL) positioned on the interlayer, the GIIL comprising
a CoCrRu-oxide;

forming a magnetic layer positioned on the GIIL; and

forming an exchange break layer (EBL) positioned on the

magnetic layer,

wherein the magnetic layer comprises a plurality of mag-

netic layers, and the EBL comprises a plurality of EBLs,
the magnetic layers and the EBLs being alternately
arranged, and

wherein each of the plurality of EBLs is configured to

prevent a magnetic exchange coupling between a first
layer above and a second layer below the each of the
plurality of EBLs.

11. The method of claim 10, wherein the GIIL comprises
TiO2 at about 10 to 25 atomic percent and Ru at about 10 to
40 atomic percent.

12. The method of claim 10, wherein the magnetic layer
comprises a CoPtX-oxide alloy, wherein X is selected from
the group consisting of Cr, Ru, and B, and the oxide is
selected from the group consisting of Ti02, Si02, Cr203, and
B203.

13. The method of claim 10, wherein the interlayer com-
prises Ru.

14. The method of claim 10, wherein the substrate com-
prises a material selected from the group consisting of
Al—Mg and glass.

15. The method of claim 10, wherein the soft underlayer
comprises an antiferromagnetic coupled soft magnetic under-
layer.

16. A method of fabricating a perpendicular magnetic
recording (PMR) media stack, the method comprising:

forming a soft underlayer on a substrate;

forming an interlayer positioned on the soft underlayer;

forming a non-magnetic grain isolation initiation layer

(GIIL) positioned on the interlayer, the GIIL comprising
a CoCrRu-oxide;

forming a magnetic layer positioned on the GIIL; and

forming an exchange break layer (EBL) positioned on the

magnetic layer,

wherein forming the magnetic layer comprises forming a

plurality of magnetic layers; and

wherein forming the first EBL comprises forming a plural-

ity of EBLs, the magnetic layers and the EBLs being
alternately arranged,

wherein a first EBL and a second EBL of the plurality of

EBLs, comprise different materials, and

wherein the first EBL comprises a CoCrRu-oxide, and the

second EBL comprises a CoCr-oxide.
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17. The method of claim 16, wherein the first EBL com-
prises TiO2 at about 10 to 25 atomic percent and Ru at about
10 to 40 atomic percent.
18. The method of claim 10, wherein the GIIL comprising
the CoCrRu-oxide comprises Ru at about 10 to 40 atomic 5
percent.



